We aim to make MAAS observable, a system in which the internal state can be estimated using only telemetry data. We now offer easier integration with Prometheus and Loki, which are the data ingestion components of the popular Grafana / Prometheus / Loki / AlarmManager stack. This data should be consumed by a stack composed of off-the-shelf open source software, provided by either Juju (for example with the Canonical Observability Stack) or third-parties (SaaS, self-managed).
In this document, you will learn:
Depicted below we have a reference observability stack composed of Prometheus (metrics ingestion and alerting based on metrics), Loki (log ingestion and alerting based on logs), Grafana (visualisation), Alertmanager (notification routing and dispatching) and Grafana Agent (telemetry collector).
This document shows how to configure this stack to consume telemetry and to raise alerts of failures.
MAAS observability requirements
Both hosts require Internet access during the install process. We use LXD to create this setup in a single host, but it’s optional. When configuring the stack for a production environment, we advise you to read the Prometheus and Loki documentation to improve security and performance.
How to use MAAS observability features
Observing MAAS requires three steps: configuring the tool stack, exporting the telemetry, and then verifying that everything is working properly. This section will show you:
How to configure the observability stack
Create a VM with the following script to install all required software.
export LXD_NET=virbr0
export GRAFANA_REPOS=https://packages.grafana.com/oss/deb
export GRAFANA_KEY=https://packages.grafana.com/gpg.key
export LOKI_PKG=https://github.com/grafana/loki/releases/download/v2.4.2/loki-linux-amd64.zip
export PROM_PKG=https://github.com/prometheus/prometheus/releases/download/v2.31.1/prometheus-2.31.1.linux-amd64.tar.gz
export PROM_ALERT_PKG=https://github.com/prometheus/alertmanager/releases/download/v0.23.0/alertmanager-0.23.0.linux-amd64.tar.gz
cat <<EOF | lxc launch ubuntu: o11y
config:
user.user-data: |
#cloud-config
apt:
sources:
grafana:
source: 'deb ${GRAFANA_REPOS} stable main'
key: |
$(wget -qO- ${GRAFANA_KEY} | sed 's/^/ /')
packages:
- unzip
- grafana
- make
- git
- python3-pip
runcmd:
- mkdir -p /opt/prometheus /opt/loki /opt/alertmanager
- wget -q "${LOKI_PKG}" -O /tmp/loki-linux-amd64.zip
- unzip /tmp/loki-linux-amd64.zip -d /opt/loki
- chmod a+x /opt/loki/loki-linux-amd64
- wget -qO- "${PROM_PKG}" | tar xz --strip-components=1 -C /opt/prometheus
- wget -qO- "${PROM_ALERT_PKG}" | tar xz --strip-components=1 -C /opt/alertmanager
- cat /dev/zero | sudo -u ubuntu -- ssh-keygen -q -N ""
ssh_authorized_keys:
- $(cat ${HOME}/.ssh/id_rsa.pub | cut -d' ' -f1-2)
description: O11y stack
devices:
eth0:
type: nic
name: eth0
network: ${LXD_NET}
EOF
# log into the VM
lxc shell 011y
Next, you have to configure and start four services, include Prometheus, Loki, AlertManager, and Grafana. This subsection will teach you:
Once these services are started, you can proceed to export telemetry data and see how your observability tools are working.
How to configure and start the Prometheus service
Create the Prometheus configuration.
cat > /opt/prometheus/prometheus.yaml <<EOF
global:
evaluation_interval: 1m
rule_files:
- /var/lib/prometheus/rules/maas/*.yml
alerting:
alertmanagers:
- static_configs:
- targets:
- localhost:9093
EOF
MAAS has a git repository of curated alert rules for Prometheus. Checkout this repository, compile the rules and copy them to prometheus directory.
git clone https://github.com/canonical/maas-prometheus-alert-rules.git
cd maas-prometheus-alert-rules
make python-deps groups
mkdir -p /var/lib/prometheus/rules/maas
cp group.yml /var/lib/prometheus/rules/maas/
Start the Prometheus service. You should enable the Remote-Write Receiver function.
systemd-run -u prometheus /opt/prometheus/prometheus \
--config.file=/opt/prometheus/prometheus.yaml \
--enable-feature=remote-write-receiver
How to configure and start the Loki service
Create the Loki configuration.
cat > /opt/loki/loki.yaml <<EOF
auth_enabled: false
server:
http_listen_port: 3100
grpc_listen_port: 9096
common:
path_prefix: /var/lib/loki/
storage:
filesystem:
chunks_directory: /var/lib/loki/chunks
rules_directory: /var/lib/loki/rules
replication_factor: 1
ring:
instance_addr: 127.0.0.1
kvstore:
store: inmemory
schema_config:
configs:
- from: 2020-10-24
store: boltdb-shipper
object_store: filesystem
schema: v11
index:
prefix: index_
period: 24h
ruler:
alertmanager_url: http://localhost:9093
evaluation_interval: 15s
poll_interval: 1m
storage:
type: local
local:
directory: /var/lib/loki/rules
enable_api: true
EOF
MAAS has a git repository of curated alert rules for Loki. Checkout this repository, compile the rules and copy them to Loki directory.
git clone https://github.com/canonical/maas-loki-alert-rules.git
cd maas-loki-alert-rules
make groups
mkdir -p /var/lib/loki/rules/fake
cp rules/bundle.yml /var/lib/loki/rules/fake/
Start the Loki service.
systemd-run -u loki /opt/loki/loki-linux-amd64 \
--config.file=/opt/loki/loki.yaml
The default configuration is enough for receiving alerts from Prometheus and Loki. You should read the project documentation to change it to forward notifications to somewhere useful.
systemd-run -u alertmanager /opt/alertmanager/alertmanager \
--config.file=/opt/alertmanager/alertmanager.yml
You can access the AlertManager dashboard at http://<VM_IP>:9093
Grafana works out-of-the-box with the default configuration.
systemctl enable grafana-server
systemctl start grafana-server
You can access the dashboard at http://<VM_IP>:3000
, the default user/password is “admin”.
How to export MAAS controller telemetry
The Grafana Agent should be installed in the same host as MAAS.
# Set this to the address of the VM running Loki and Prometheus
export O11y_IP=<VM_IP>
export GRAFANA_AGENT_PKG=https://github.com/grafana/agent/releases/download/v0.22.0/agent-linux-amd64.zip
wget -q "${GRAFANA_AGENT_PKG}" -O /tmp/agent.zip
unzip /tmp/agent.zip -d /opt/agent
chmod a+x /opt/agent/agent-linux-amd64
Copy the agent example configuration from MAAS and start the agent. Adapt the environment variable values to your setup. For example, if you’re using a snap, the MAAS_LOGS
variable would be as shown (/var/snap/maas/common/log
):
mkdir -p /var/lib/grafana-agent/positions \
/var/lib/grafana-agent/wal
cp /snap/maas/current/usr/share/maas/grafana_agent/agent.yaml.example /opt/agent/agent.yml
systemd-run -u telemetry \
-E HOSTNAME="$(hostname)" \
-E AGENT_WAL_DIR="/var/lib/grafana-agent/wal" \
-E AGENT_POS_DIR="/var/lib/grafana-agent/positions" \
-E PROMETHEUS_REMOTE_WRITE_URL="http://${O11y_IP}:9090/api/v1/write" \
-E LOKI_API_URL="http://${O11y_IP}:3100/loki/api/v1/push" \
-E MAAS_LOGS="/var/snap/maas/common/log/" \
-E MAAS_IS_REGION="true" \
-E MAAS_IS_RACK="true" \
-E MAAS_AZ="default" \
/opt/agent/agent-linux-amd64 \
-config.expand-env \
-config.file=/opt/agent/agent.yml
On the other hand, if you’re using packages, the MAAS_LOGS
would be /var/log/maas
, as shown below:
...
-E MAAS_LOGS="/var/log/maas" \
...
Be sure to adjust the values of the other environment variables to suit your situation, where applicable.
Next, enable log forwarding in MAAS.
# set the TCP port the Grafana Agent is listening for syslog messages
# this port must match the one in /opt/agent/agent.yml
maas $ADMIN maas set-config name=promtail_port value=5238
# enable syslog forwarding
maas $ADMIN maas set-config name=promtail_enabled value=true
How to verify correct operation
You should be able to add Loki and Prometheus as datasources in Grafana and to create dashboards for visualising MAAS metrics, and to receive alerts through Alertmanager.
Once the /metrics
endpoint is available in MAAS services, Prometheus can be configured to scrape metric values from these. You can configure this by adding a stanza like the following to the prometheus configuration↗
:
- job_name: maas
static_configs:
- targets:
- <maas-host1-IP>:5239 # for regiond
- <maas-host1-IP>:5249 # for rackd
- <maas-host2-IP>:5239 # regiond-only
- <maas-host3-IP>:5249 # rackd-only
If the MAAS installation includes multiple nodes, the targets
entries must be adjusted accordingly, to match services deployed on each node.
If you have enabled MAAS stats, you must add an additional Prometheus job to the config:
- job_name: maas
metrics_path: /MAAS/metrics
static_configs:
- targets:
- <maas-host-IP>:5240
In case of a multi-host deploy, adding a single IP for any of the MAAS hosts running regiond
will suffice.
Deploying Prometheus and Grafana
Grafana↗
and Prometheus can be easily deployed using Juju.
The MAAS performance repo↗
repository provides a sample deploy-stack
script that will deploy and configure the stack on LXD containers.
First, you must install juju via:
sudo snap install --classic juju
Then you can run the script from the repo:
grafana/deploy-stack <MAAS-IP>
To follow the progress of the deployment, run the following:
watch -c juju status --color
Once you deploy everything, the Grafana UI is accessible on port 3000
with the credentials admin
/grafana
. The Prometheus UI will be available on port 9090
.
The repository also provides some sample dashboard covering the most common use cases for graphs. These are available under grafana/dashboards
. You can import them from the Grafana UI or API.